540

34 Agri and Food Waste Valorization Through the Production of Biochemicals and Packaging Materials

110 Bátori, V., Lundin, M., Åkesson, D. et al. (2019). The effect of glycerol, sugar,

and maleic anhydride on pectin-cellulose thin films prepared from orange

waste. Polymers 11: 392. https://doi.org/10.3390/polym11030392.

111 Mascheroni, E., Guillard, V., Nalin, F. et al. (2010). Diffusivity of propolis

compounds in polylactic acid polymer for the development of anti-microbial

packaging films. Journal of Food Engineering 98: 294–301. https://doi.org/10

.1016/j.jfoodeng.2009.12.028.

112 Del Nobile, M.A., Conte, A., Buonocore, G.G. et al. (2009). Active packaging by

extrusion processing of recyclable and biodegradable polymers. Journal of Food

Engineering 93: 1–6. https://doi.org/10.1016/j.jfoodeng.2008.12.022.

113 Zhu, K.J., Xiangzhou, L., and Shilin, Y.J. (1990). Preparation, characterization,

and properties of polylactide (PLA)–poly(ethylene glycol) (PEG) copolymers: a

potential drug carrier. Journal of Applied Polymer Science 39: 1–9.

114 Zhu, Z., Xiong, C., Zhang, L., and Deng, X. (1997). Synthesis and charac-

terization of poly(ε-caprolactone)-b-poly(ethylene glycol) block copolymer.

Journal of Polymer Science Part A: Polymer Chemistry 35: 709–714. https://doi

.org/10.1002/(SICI)1099-0518(199703)35:4<709::AID-POLA14>3.0.CO;2-R.

115 Bigg, D.M. (2005). Polylactide copolymers: effect of copolymer ratio and end

capping on their properties. Advances in Polymer Technology 24: 69–82.

116 Faruk, O., Bledzki, A.K., Fink, H.P. et al. (2012). Biocomposites reinforced with

natural fibers 2000–2010. Progress in Polymer Science 37: 1552–1596. https://doi

.org/10.1016/j.progpolymsci.2012.04.003.

117 Purkayastha, M.D., Manhar, A.K., Das, V.K. et al. (2014). Antioxidative, hemo-

compatible, fluorescent carbon nanodots from an “end-of-pipe” agricultural

waste: exploring its new horizon in the food-packaging domain. Journal of Agri-

culture and Food Chemistry 62: 4509–4520. https://doi.org/10.1021/jf500138f.

118 Gogoi, K., Phukan, M.M., Dutta, N. et al. (2014). Valorization and miscella-

neous prospects of waste Musa balbisiana colla pseudostem. Journal of Waste

Management 2014: 412156. https://doi.org/10.1155/2014/412156.

119 Hammajam, A.A., El-Jummah, A.M., and Ismarrubie, Z.N. (2019). The green

composites: millet husk fiber (MHF) filled poly lactic acid (PLA) and degrad-

ability effects on environment. Open Journal of Composite Materials 9: 300–311.

120 Wahit, M.U., Akos, N.I., and Laftah, W.A. (2012). Influence of natural

fibers on the mechanical properties and biodegradation of poly(lactic acid)

and poly(ε-caprolactone) composites: a review. Polymer Composites 33 (7):

1046–1053. https://doi.org/10.1002/pc.22249.

121 Anon (2007). AZONANO. https://www.azonano.com/article.aspx?

ArticleID=1832#:~:text=Nanocomposites%20are%20materials%20that

%20incorporate,and%20electrical%20or%20thermal%20conductivity

122 García-García, D., Carbonell, A., Samper, M.D. et al. (2015). Green composites

based on polypropylene matrix and hydrophobized spend coffee ground (SCG)

powder. Composites Part B: Engineering 78: 256–265.

123 Avérous, L. and Digabel, F.L. (2006). Properties of biocomposites based on

lignocellulosic fillers. Carbohydrate Polymers 66: 480–493.