540
34 Agri and Food Waste Valorization Through the Production of Biochemicals and Packaging Materials
110 Bátori, V., Lundin, M., Åkesson, D. et al. (2019). The effect of glycerol, sugar,
and maleic anhydride on pectin-cellulose thin films prepared from orange
waste. Polymers 11: 392. https://doi.org/10.3390/polym11030392.
111 Mascheroni, E., Guillard, V., Nalin, F. et al. (2010). Diffusivity of propolis
compounds in polylactic acid polymer for the development of anti-microbial
packaging films. Journal of Food Engineering 98: 294–301. https://doi.org/10
.1016/j.jfoodeng.2009.12.028.
112 Del Nobile, M.A., Conte, A., Buonocore, G.G. et al. (2009). Active packaging by
extrusion processing of recyclable and biodegradable polymers. Journal of Food
Engineering 93: 1–6. https://doi.org/10.1016/j.jfoodeng.2008.12.022.
113 Zhu, K.J., Xiangzhou, L., and Shilin, Y.J. (1990). Preparation, characterization,
and properties of polylactide (PLA)–poly(ethylene glycol) (PEG) copolymers: a
potential drug carrier. Journal of Applied Polymer Science 39: 1–9.
114 Zhu, Z., Xiong, C., Zhang, L., and Deng, X. (1997). Synthesis and charac-
terization of poly(ε-caprolactone)-b-poly(ethylene glycol) block copolymer.
Journal of Polymer Science Part A: Polymer Chemistry 35: 709–714. https://doi
.org/10.1002/(SICI)1099-0518(199703)35:4<709::AID-POLA14>3.0.CO;2-R.
115 Bigg, D.M. (2005). Polylactide copolymers: effect of copolymer ratio and end
capping on their properties. Advances in Polymer Technology 24: 69–82.
116 Faruk, O., Bledzki, A.K., Fink, H.P. et al. (2012). Biocomposites reinforced with
natural fibers 2000–2010. Progress in Polymer Science 37: 1552–1596. https://doi
.org/10.1016/j.progpolymsci.2012.04.003.
117 Purkayastha, M.D., Manhar, A.K., Das, V.K. et al. (2014). Antioxidative, hemo-
compatible, fluorescent carbon nanodots from an “end-of-pipe” agricultural
waste: exploring its new horizon in the food-packaging domain. Journal of Agri-
culture and Food Chemistry 62: 4509–4520. https://doi.org/10.1021/jf500138f.
118 Gogoi, K., Phukan, M.M., Dutta, N. et al. (2014). Valorization and miscella-
neous prospects of waste Musa balbisiana colla pseudostem. Journal of Waste
Management 2014: 412156. https://doi.org/10.1155/2014/412156.
119 Hammajam, A.A., El-Jummah, A.M., and Ismarrubie, Z.N. (2019). The green
composites: millet husk fiber (MHF) filled poly lactic acid (PLA) and degrad-
ability effects on environment. Open Journal of Composite Materials 9: 300–311.
120 Wahit, M.U., Akos, N.I., and Laftah, W.A. (2012). Influence of natural
fibers on the mechanical properties and biodegradation of poly(lactic acid)
and poly(ε-caprolactone) composites: a review. Polymer Composites 33 (7):
1046–1053. https://doi.org/10.1002/pc.22249.
121 Anon (2007). AZONANO. https://www.azonano.com/article.aspx?
ArticleID=1832#:~:text=Nanocomposites%20are%20materials%20that
%20incorporate,and%20electrical%20or%20thermal%20conductivity
122 García-García, D., Carbonell, A., Samper, M.D. et al. (2015). Green composites
based on polypropylene matrix and hydrophobized spend coffee ground (SCG)
powder. Composites Part B: Engineering 78: 256–265.
123 Avérous, L. and Digabel, F.L. (2006). Properties of biocomposites based on
lignocellulosic fillers. Carbohydrate Polymers 66: 480–493.